Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Considerable research describes the interactions between seagrasses and their sedimentary environment, but there is little information on how populations differ in their innate versus plastic responses to these differences. Here, we test whether sediment contributes to eelgrass population differentiation and the nature of plastic responses to different sediment environments. We do this via a 15-week, fully crossed common garden experiment with two populations and their native sediment types. Plants from the warmer-temperature, clay-dominated site (90% silt + clay, 10% sand) consistently maintained greater biomass than plants from the cooler, sand-dominated site (60% sand, 40% silt + clay). Plants from both populations were highly plastic for root length and clonal shoot size, with both increasing when planted in clay-dominated compared to sand-dominated sediment. Plants from the clay-dominated site grew longer rhizomes in foreign sediment while plants from the sand-dominated site had no change in this plant trait, indicating some measure of home site advantage with respect to sediment conditions. Porewater sulfide also exhibited this pattern where concentrations were very low in clay-dominated sediment for all plants, but in the sand-dominated treatment, only plants native to sand-dominated sediment maintained porewater sulfide concentrations below toxic levels. These patterns may be mediated by microbiome differences between populations as roots from plants native to clay-dominated sediment had more fixed microbiomes between treatments compared to plants native to sand-dominated sediment. These results support that sediment type partially mediates home site advantage in eelgrass populations and suggest differential population responses may be mediated by the associated microbiome.more » « less
-
Abstract Temperature increases due to climate change have affected the distribution and severity of diseases in natural systems, causing outbreaks that can destroy host populations. Host identity, diversity, and the associated microbiome can affect host responses to both infection and temperature, but little is known about how they could function as important mediators of disease in altered thermal environments. We conducted an 8‐week warming experiment to test the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass (Zostera marina) by the wasting disease parasite (Labyrinthula zosterae). At elevated temperatures, we found that genotypically diverse host assemblages had reduced infection intensity, but not reduced prevalence, relative to less diverse assemblages. This dilution effect on parasite intensity was the result of both host composition effects as well as emergent properties of biodiversity. In contrast with the benefits of genotypic diversity under warming, diversity actually increased parasite intensity slightly in ambient temperatures. We found mixed support for the hypothesis that a growth–defense trade‐off contributed to elevated disease intensity under warming. Changes in the abundance (but not composition) of a few taxa in the host microbiome were correlated with genotype‐specific responses to wasting disease infections under warming, consistent with the emerging evidence linking changes in the host microbiome to the outcome of host–parasite interactions. This work emphasizes the context dependence of biodiversity–disease relationships and highlights the potential importance of interactions among biodiversity loss, climate change, and disease outbreaks in a key foundation species.more » « less
-
Local adaptation in a marine foundation species: Implications for resilience to future global changeAbstract Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species’ geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species’ adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine‐scale (2–12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three‐way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home‐site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local‐scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range‐center eelgrass population that is pre‐adapted to extremely warm temperatures similar to those experienced by low‐latitude range‐edge populations of eelgrass, demonstrating how reservoirs of heat‐tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local‐scale population differentiation and promote a phenotypic management approach to species conservation.more » « less
-
Abstract Multiple disturbances can have mixed effects on biodiversity. Whether the interaction of sequential disturbances drives local extinctions or promotes diversity depends on the severity of biomass reductions relative to any stabilizing and/or equalizing effects generated by the disturbance regimes.Through a manipulative mesocosm experiment, we examined how warming events in the fall and simulated grazing disturbance (i.e. clipping) in the winter affected the density, biomass and genotypic diversity of assemblages of the clonal seagrassZostera marina.We show that the interaction of the two disturbance types reduced density and biomass to a greater degree than warming or clipping alone.The genotype with the highest biomass in the assemblage shifted under the different experimental regimes such that the traits of winners were distinct in the different treatments. The favouring of different traits by different disturbances led to reduced evenness when a single disturbance was applied, and enhanced evenness under multiple disturbances.We conclude that sequential disturbances can alter the outcome of inter‐genotypic interactions and maintain genotypic diversity in clonal populations. Our study expands the context in which disturbance can influence intraspecific diversity by showing that fluctuating selection may result from the sequential application of different disturbance types and not simply seasonal changes in a single agent. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Abstract Mortality and shifts in species distributions are among the most obvious consequences of extreme climatic events. However, the sublethal effects of an extreme event can have persistent impacts throughout an individual’s lifetime and into future generations via within‐generation and transgenerational phenotypic plasticity. These changes can either confer resilience or increase susceptibility to subsequent stressful events, with impacts on population, community, and potentially ecosystem processes. Here, we show how a simulated extreme warming event causes persistent changes in the morphology and growth of a foundation species (eelgrass,Zostera marina) across multiple clonal generations and multiple years. The effect of previous parental exposure to warming increased aboveground biomass, shoot length, and aboveground–belowground biomass ratios while also greatly decreasing leaf growth rates. Long‐term increases in aboveground–belowground biomass ratios could indicate an adaptive clonal transgenerational response to warmer climates that reduces the burden of increased respiration in belowground biomass. These transgenerational responses were likely decoupled from clonal parent provisioning as rhizome size of clonal offspring was standardized at planting and rhizome starch reserves were not impacted by warming treatments. Future investigations into potential epigenetic mechanisms underpinning such clonal transgenerational plasticity will be necessary to understand the resilience of asexual foundation species to repeated extreme climatic events.more » « less
An official website of the United States government
